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Abstract 

A deep learning approach is designed to act as a surrogate model in the process of the genetic 

algorithm-based optimization of a slotted hydrofoil. The designed deep Artificial Neural Network 

(ANN) has a multilayer perceptron-based architecture that composes input, fully connected, leaky 

ReLU, batch normalization and regression layers. The accuracy of this deep ANN is assessed for 

a dummy multi-input multi-output problem and its efficiency is verified. This verified deep ANN 

is employed in the process of optimization providing promising outcomes.  

Deep ANN 

Having inputs and target outputs data, in the process of the ANN, the training dataset and test ones 

should be first determined. The training dataset is created by 80% of data while the remaining 20% 

of data is used to verify the trained network. The preprocessing on the training dataset should be 

done before training a deep ANN. This preprocessing includes the normalization of data to the 

interval of [0,1]. This normalization increases the accuracy and speed of the ANN.   

The first layer of the designed ANN is an input layer with two features. This layer is connected to 

a triple-layer that will be repeated 𝑁𝑟 times. The first layer in this triple layer is a fully-connected 

layer with 𝑁𝑛 neurons. The next one is the leaky Rectified Linear Unit (ReLU) that can be 

efficiently employed for the regression jobs. The last one in the triple-layer layer is the batch 

normalization layer aiming to reduce errors of the ANN and increase its accuracy by retaining 

numbers throughout the ANN on the same scale. After repeating this triple layer 𝑁𝑟 times, then a 

fully connected layer is used to give out the data to the last layer which is the regression layer. A 

schematic of the designed deep ANN is shown in Fig. 1. 
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These training data will enter the network and optimization is performed to properly adjust the 

weights and biases as the learnable parameters of the ANN. This optimizer tries to minimize a loss 

function indicating the differences between the ANN outputs and the target outputs. The optimizer 

is the Adam method. The number of epochs is 250 and the learning rate equals 0.08. Our study 

shows that these number of epochs and learning rate are appropriate choices leading to accurate 

and fast ANN.  

Finally, the accuracy of the trained deep ANN is assessed by evaluating the differences between 

the outputs of the deep ANN and the target outputs based on the 𝐿2-norm error. This error is 

evaluated for both the training dataset and testing one to assess overfitting and underfitting 

problems. 

 

Figure 1 Architecture of the designed ANN network 

 

Dummy problem 

The inputs and the outputs of this problem are as follow: 

 Symbols and equations Interval 

Input #1 𝑋1 [-5,5] 

Input #2 𝑋2 [-5,5] 

Output #1 𝑌1 = 𝑋1  

Output #2 𝑌1 = 𝑋1𝑋1𝑋1 + 𝑋2𝑋2𝑋2 + 𝑋1𝑋2  

 

The first function is linear, however, the second one is highly non-linear and the designed deep 

ANN should be able to capture both of them that might be hard by a single design (see Fig. 2). The 

data consist of 1000 samples generated uniformly by a pseudorandom number generator in the 
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prescribed intervals. Then the ANN is trained and tested as discussed in the previous section. The 

number of replication of the triple-layer is 𝑁𝑟 = 4 and their number of neurons is  𝑁𝑛 = 60. The 

errors obtained are given in Table 1 that are quite in an acceptable range.   

 

Table 1 Errors for the dummy problem. 

 Training dataset Testing dataset 

𝐿2 − 𝑛𝑜𝑟𝑚 𝑒𝑟𝑟𝑜𝑟 (𝑌1) 0.0092 0.0090 

𝐿2 − 𝑛𝑜𝑟𝑚 𝑒𝑟𝑟𝑜𝑟 (𝑌2) 0.0082 0.0082 

 

 

 

Figure 2 Response surfaces predicted by the designed deep ANN for the dummy problem.  

 



4 
 

Hydrofoil optimization 

The verified deep ANN architecture is also trained to be used as a surrogate model in the process 

of the genetic-algorithm based optimization. Here, the dataset has 40 data only got from a physical 

solver which is a finite volume discretization of the governing equations of the cavitating fluid 

flows.  The number of repeated triple-layers is 𝑁𝑟 = 4 and their number of neurons is  𝑁𝑛 = 30. 

Here, a fewer number of neurons is set to avoid the overfitting problem. Figure 3 shows the 

surrogate function obtained by the deep ANN and the location of the optimized points in the Pareto 

front. There is an acceptable agreement between these results and the ones obtained by applying 

the Gaussian process regression method (see the previous document). The Pareto front is also given 

in Table 2, so it can be seen that it is possible to reduce the cavity pocket size without a reduction 

in the lift coefficient. 

 

 
Figure 3 Contours of the lift coefficient and the cavity length obtained by the deep ANN. Training plus 

testing data (blue circle scatters); Optimized data from the Pareto front (red circle scatters). 
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Table 1 Pareto front points (GA output) 

𝜃 𝑥𝑠𝑙𝑜𝑡 𝐿𝑐 𝐶𝑙 𝐿𝑐
̅̅̅ − 𝐿𝑐 𝐶𝑙 − 𝐶𝑙̅  

84.99279 0.146602 0.0777 0.571752 0.133 -0.03775  

84.93054 0.176084 0.084683 0.575269 0.126017 -0.03423  

69.36935 0.399959 0.358936 0.631202 -0.14824 0.021702  

80.45111 0.399908 0.237484 0.610132 -0.02678 0.000632  

79.98436 0.396634 0.258858 0.610417 -0.04816 0.000917  

84.96125 0.274696 0.085912 0.586315 0.124788 -0.02318  

84.99279 0.146602 0.0777 0.571752 0.133 -0.03775  

76.8342 0.39641 0.313268 0.616631 -0.10257 0.007131  

84.0977 0.393764 0.115442 0.602298 0.095258 -0.0072 Selected 

82.82821 0.394195 0.153016 0.604608 0.057684 -0.00489  

79.74103 0.397206 0.271288 0.611016 -0.06059 0.001516  

81.97769 0.385811 0.177898 0.604981 0.032802 -0.00452  

74.58137 0.393952 0.332981 0.620582 -0.12228 0.011082  

72.03045 0.394894 0.350353 0.625765 -0.13965 0.016265  

84.54465 0.368411 0.10137 0.59807 0.10933 -0.01143  

83.28995 0.395358 0.139394 0.603947 0.071306 -0.00555  

77.92486 0.389058 0.302342 0.613032 -0.09164 0.003532  

80.86997 0.393003 0.21275 0.607931 -0.00205 -0.00157  

 

 

 

 


